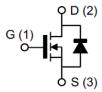


# DAC040N120P2

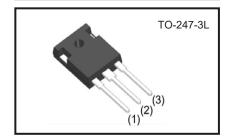
### Silicon Carbide Enhancement Mode MOSFET

#### **Features**

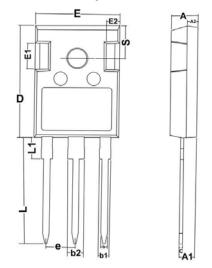
- Low On-Resistance and High Current Density
- Low Capacitance for High Frequency Operation
- Positive Temperature Coefficient Device


### **Benefits**

- Higher System Efficiency
- Increase Parallel Device Convenience
- Allow High Frequency Operation
- Realize Compact and Lightweight Systems


## **Applications**

- Switching Mode Power Supply
- DC/DC Converters, UPS, and PFC
- Power Inverters
- · Auxiliary Power Supplies
- Solar/Wind Renewable Energy


### Preliminary



| V <sub>DSS</sub>      | 1200V        |
|-----------------------|--------------|
| I <sub>D(@25°C)</sub> | 60A          |
| $R_{DS(ON)}$          | $40 m\Omega$ |



Package Dimensions



| 0      | Dimensions in millimeters |       |       |  |  |
|--------|---------------------------|-------|-------|--|--|
| Symbol | Min.                      | Avg.  | Max.  |  |  |
| Α      | 4.80                      | 5.00  | 5.20  |  |  |
| A1     | 2.21                      | 2.41  | 2.61  |  |  |
| A2     | 1.80                      | 2.00  | 2.20  |  |  |
| b      | 1.06                      | 1.21  | 1.36  |  |  |
| b1     | 2.33                      | 2.63  | 2.93  |  |  |
| b2     | 1.07                      | 1.30  | 1.60  |  |  |
| C      | 0.51                      | 0.61  | 0.75  |  |  |
| D      | 23.30                     | 23.45 | 23.60 |  |  |
| Е      | 15.74                     | 15.94 | 16.14 |  |  |
| е      | 2.54 BSC                  |       |       |  |  |
| e1     | 5.08 BSC                  |       |       |  |  |
| L      | 17.27                     | 17.57 | 17.87 |  |  |
| L1     | 3.99                      | 4.19  | 4.39  |  |  |
| Q      | 5.49                      | 5.79  | 6.09  |  |  |
| Т      | 2.35                      | 2.50  | 2.65  |  |  |

## **Absolute Maximum Ratings**

(Tc = 25°C unless otherwise specified)

| Parameter                            |                                                   | Symbol                     | Ratings     | Unit |
|--------------------------------------|---------------------------------------------------|----------------------------|-------------|------|
| Drain-Source Voltage                 | V <sub>GS</sub> =0V<br>I <sub>D</sub> =100µA      | V <sub>DS</sub>            | 1200        | V    |
| Gate-Source Voltage                  |                                                   | $V_{GS}$                   | -5/+20      | V    |
| Drain Current-Continuous             | @ T <sub>c</sub> =25°C<br>@ T <sub>c</sub> =100°C | Ι <sub>D</sub>             | 60<br>40    | A    |
| Pulse Drain Current                  |                                                   | I <sub>D,pulse</sub>       | 160         | Α    |
| Power Dissipation                    | @ T <sub>C</sub> =25°C<br>@ T <sub>J</sub> =150°C | P <sub>D</sub>             | 270         | w    |
| Storage Temperature Range            |                                                   | T <sub>STG</sub>           | -55 to +150 | °C   |
| Operating Junction Temperature Range |                                                   | Τ <sub>J</sub>             | -55 to +150 | °C   |
| Thermal Resistance, Junction-to-Case |                                                   | Rθ <sub>JC</sub> Typ. 0.46 |             | °C/W |



## Electrical Characteristics @ Tc =25°C (unless otherwise specified)

| Parameter                         | Symbol              | Conditions                                                                     | Min. | Тур. | Max. | Unit |
|-----------------------------------|---------------------|--------------------------------------------------------------------------------|------|------|------|------|
| OFF Characteristics               |                     |                                                                                |      |      |      |      |
| Drain-Source Breakdown Voltage    | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V , I <sub>DS</sub> =0.1mA                                   | 1200 | -    | -    | ٧    |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>    | V <sub>GS</sub> =0V , V <sub>DS</sub> =1200V                                   | -    | 1    | 100  | μΑ   |
| Gate-Source Leakage Current       | I <sub>GSS</sub>    | V <sub>GS</sub> =20V , V <sub>DS</sub> =0V                                     | -    | -    | 250  | nA   |
| ON Characteristics                |                     |                                                                                |      |      |      |      |
| Gate Threshold Voltage            | $V_{GS(th)}$        | V <sub>DS</sub> = 10V , I <sub>DS</sub> =1mA                                   | 2    | 2.6  | 4    | ٧    |
| Drain-Source On-State Resistance  | R <sub>DS(on)</sub> | V <sub>GS</sub> =20V , I <sub>DS</sub> =40A                                    | -    | 40   | 52   | mΩ   |
| Transconductance                  | g fs                | V <sub>DS</sub> =20V , I <sub>DS</sub> =40A                                    | -    | 15.1 | -    | S    |
| Dynamic Characteristics           |                     |                                                                                |      |      |      |      |
| Input Capacitance                 | C <sub>iss</sub>    | V <sub>DS</sub> =1000V                                                         | -    | 1893 | -    | pF   |
| Output Capacitance                | C <sub>oss</sub>    | V <sub>DS</sub> =1000V<br>V <sub>GS</sub> =0V                                  | -    | 150  | -    |      |
| Reverse Transfer Capacitance      | C <sub>rss</sub>    | V <sub>AC</sub> =25mV                                                          | -    | 10   | -    |      |
| C <sub>oss</sub> Stored Energy    | E <sub>oss</sub>    | Freq.=100KHz                                                                   | -    | 82   | -    | μJ   |
| Turn-On Switching Energy          | Eon                 | V <sub>DD</sub> =800V • V <sub>GS</sub> =-5V/+20V                              | -    | 1.0  | -    | mJ   |
| Turn-Off Switching Energy         | E <sub>off</sub>    | I <sub>D</sub> =40A • R <sub>G(ext)</sub> =2.5Ω<br>L=100μH                     | -    | 0.4  | -    |      |
| Switching Characteristics         |                     |                                                                                |      |      |      |      |
| Turn-On Delay Time                | t <sub>d(on)</sub>  | V <sub>DS</sub> =800V                                                          | -    | 15   | -    | - ns |
| Rise Time                         | t <sub>r</sub>      | $V_{GS}$ =-5/+20V<br>$I_D$ =40A • RL=20 $\Omega$<br>$R_{G(ext)}$ =2.5 $\Omega$ | -    | 52   | -    |      |
| Turn-Off Delay Time               | t <sub>d(off)</sub> |                                                                                | -    | 26   | -    |      |
| Fall Time                         | t <sub>f</sub>      | Timing relative to V <sub>DS</sub>                                             | -    | 34   | -    |      |
| Total Gate Charge                 | Qg                  | V <sub>DS</sub> =800V                                                          | -    | 115  | ı    |      |
| Gate to Source Charge             | $\mathbf{Q}_{gs}$   | V <sub>GS</sub> =-5/+20V                                                       | -    | 28   | -    | nC   |
| Gate to Drain Charge              | $\mathbf{Q}_{gd}$   | I <sub>D</sub> =40A                                                            | -    | 37   | -    |      |
| <b>Body Diode Characteristics</b> |                     |                                                                                |      |      |      |      |
| Inverse Diode Forward Voltage     | V <sub>SD</sub>     | V <sub>GS</sub> =-5V • I <sub>SD</sub> =20A                                    | -    | 3.3  | -    | V    |
| Continuous Diode Forward Current  | Is                  | Tc=25°C                                                                        | -    | -    | 60   | Α    |
| Reverse Recovery Time             | T <sub>rr</sub>     | V <sub>GS</sub> =-5V                                                           | -    | 54   | -    | ns   |
|                                   | Q <sub>rr</sub>     | I <sub>SD</sub> =40A • V <sub>DS</sub> =800V,<br>di/dt=1100A/μs                | -    | 283  | -    | nC   |
| Reverse Recovery Charge           |                     | _ di/dt=1100A/μs                                                               |      |      |      |      |

- 2 - Feb 2024



## **Typical Device Performance**

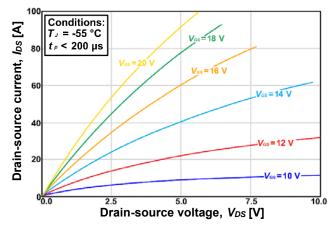



Fig 1. Output characteristics,  $T_J = -55$  °C (1st quadrant)

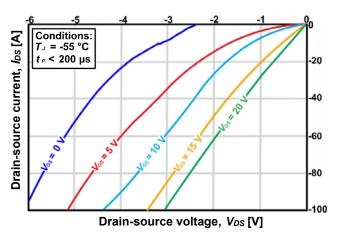



Fig 2. Output characteristics,  $T_J = -55$  °C (3rd quadrant)

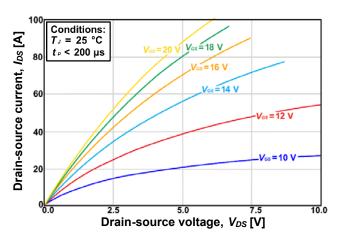



Fig 3. Output characteristics,  $T_J = 25$  °C (1st quadrant)

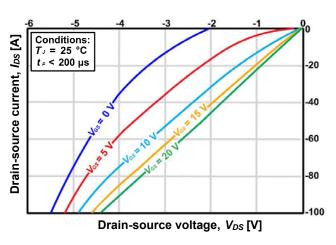



Fig 4. Output characteristics,  $T_J = 25$  °C (3rd quadrant)

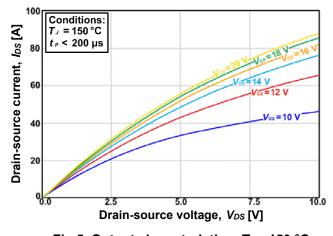



Fig 5. Output characteristics,  $T_J = 150$  °C (1st quadrant)

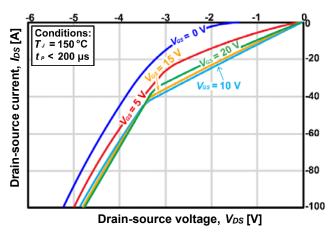



Fig 6. Output characteristics,  $T_J = 150$  °C (3rd quadrant)

www.dacosemi.com.tw

Rev1.0



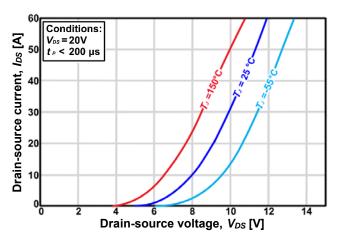



Fig 7. Transfer characteristic for various junction temperatures

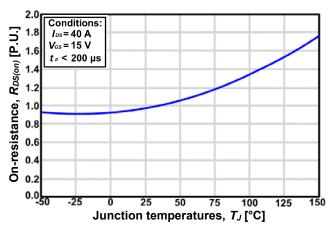



Fig 8. Normalized on-resistance vs. Temperatures

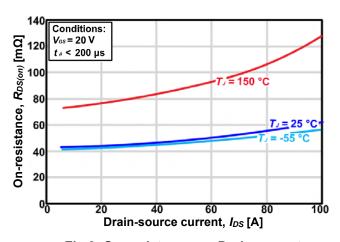



Fig 9. On-resistance vs. Drain current

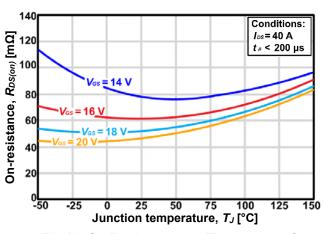



Fig 10. On-Resistance vs. Temperature for various gate voltage

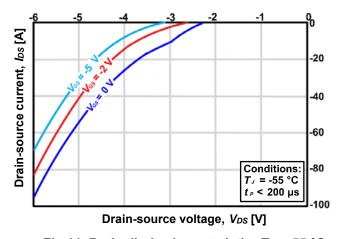



Fig 11. Body diode characteristic,  $T_J = -55$  °C

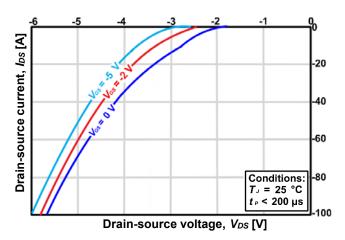



Fig 12. Body diode characteristic,  $T_J = 25$  °C

www.dacosemi.com.tw

Rev1.0





Fig 13. Body diode characteristic,  $T_J$  = 150 °C

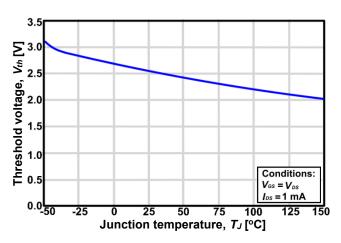



Fig 14. Threshold voltage vs. Temperature

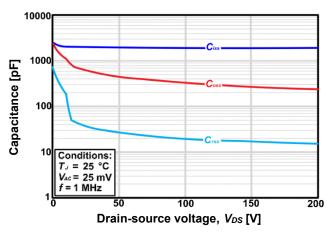



Fig 15. Capacitance vs. Drain-source voltage (0-200 V)

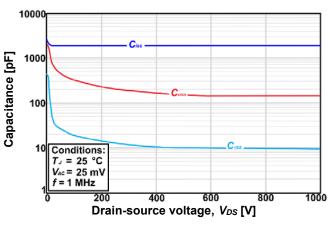



Fig 16. Capacitance vs. Drain-source voltage (0-1000 V)

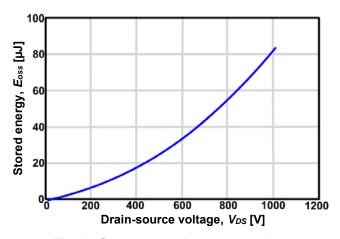



Fig 17. Output capacitance stored energy

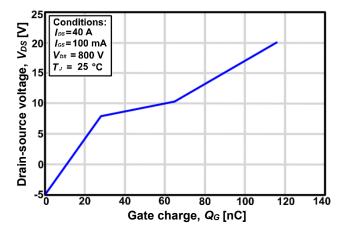



Fig 18. Gate charge characteristics

www.dacosemi.com.tw

Rev1.0



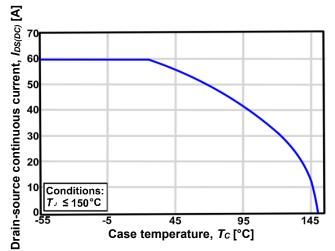



Fig 19. Continuous drain current derating vs. **Case Temperature** 

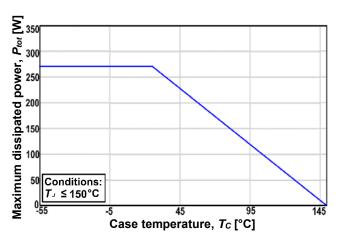



Fig 20. Maximum power dissipation derating vs. Case temperature

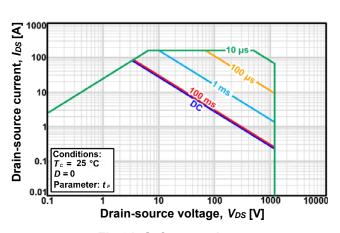



Fig 21. Safe operating area

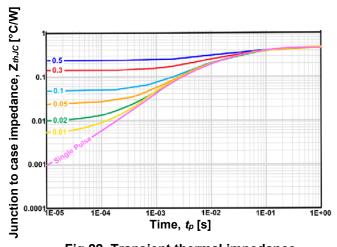



Fig 22. Transient thermal impedance (Junction - Case)

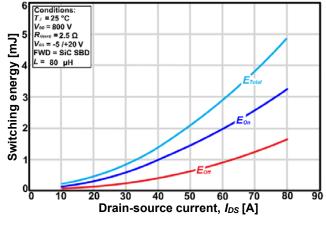



Fig 23. Clamped inductive switching energy vs. Drain current ( $V_{DD} = 800 \text{ V}$ )

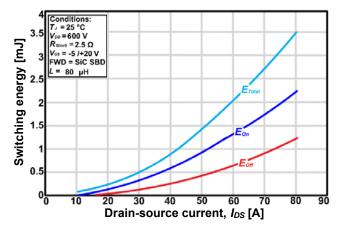



Fig 24. Clamped inductive switching energy vs. Drain current ( $V_{DD} = 600 \text{ V}$ )

Feb 2024

www.dacosemi.com.tw

Rev1.0 - 6 -



#### **Disclaimer**

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.

Rev1.0 - 7 - Feb 2024