

DAC020N120ZY4

Silicon Carbide Enhancement Mode MOSFET

SS (3

D(1)

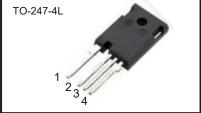
Features

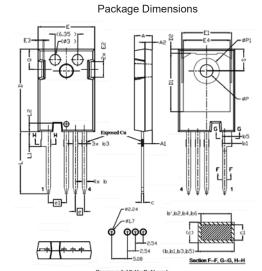
- Low Capacitance With High Speed Switching Speed
- · High frequency operation with low Capacitance
- Simple to drive with -4V/+18V gate
- Low Reverse Recovery (Qrr)
- Halogen Free and ROHS Compliant

Benefits

- Superior robustness and system reliability
- Simple to drive and easy to parallel
- Lower system cost of ownership
- Improved thermal capabilities and lower switching losses
- Faster and more efficient switching

Applications


- Solar inverters
- DC/DC converters
- Switch mode power supplies
- Induction heating
- Motor drives


Absolute Maximum Ratings

(Tc = 25°C unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Drain-Source Voltage		V _{DS}	1200	v
Gate - Source Voltage (DC)		V _{GS}	-10/+25	v
Recommended Operation Value		$V_{GS(op)}$	-4/+18	v
Drain Current-Continuous	Tc=25°C Tc=100°C	ID	110 80	A
Pulse Drain Current	pulse width tp limited by T _{Jmax}	I _{DM}	180	A
Total Power Dissipation		PD	500	w
Storage Temperature Range		T _{stg}	-55 to +175	°C
Operating Junction Temperature Range		TJ	-55 to +175	°C

Unit : mm Symbol Min Max Symbol Min Max 4.83 5.21 15.75 16.13 А Е A1 2.29 2.54 13.10 14.15 E1 1.91 2.16 E2 3.68 5.10 A2 b 1.07 1.28 E3 1.00 1.90 b 1.07 1.33 E4 12.38 13.43 2.39 2.94 2.54 BSC b1 е b2 2.39 2.84 e1 5.08 BSC b3 1.07 1.60 L 17.31 17.82 3.97 b4 1.07 1.50 L1 4.37 b5 2.39 2.69 L2 2.35 2.65 3.51 b6 2.39 2.64 ΦР 3.51 0.68 ΦΡ1 с 0.55 7.19 REF 0.55 0.65 Q 5.49 6.00 c1 D 23.30 23.60 S 6.04 6.30 17.65 D1 16.25 _ --

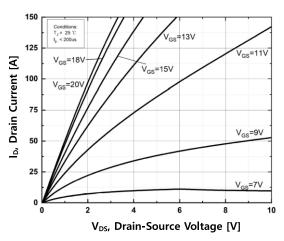
D2

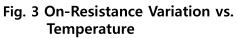
0.95

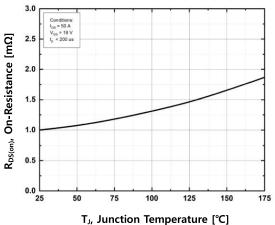
1.25

Electrical Characteristics @ T_J =25°C (unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
OFF Characteristics	1						
Drain-Source Breakdown Voltage	BVDSS	Vgs =0V Ibs =0.1mA		1200	-	-	V
Zero Gate Voltage Drain Current	loss	Vgs =0V Vps =1200V		-	1	50	uA
Gate-Source Leakage Current	lgss	VGS =18V VDS =0V		-	-	250	nA
ON Characteristics		1					
Gate Threshold Voltage	VGS(th)	Vbs =Vgs , Ibs =15mA		-	3.0	-	V
	_	Vgs=18V	Tvj =25°C	-	20	33	
Drain-Source On-State Resistance	n-Source On-State Resistance RDS(on) Ins = 50A	Tvj =175°C	-	38	-	mΩ	
Gate Resistance	RG(int)	f=1MHz,V _{AC} =25mV		-	1.3	-	Ω
Dynamic Characteristics		1					
Input Capacitance	Ciss	V _{DS} =1000V		-	4140	-	
Output Capacitance	Coss	V _{GS} =0V V _{AC} =25mV		-	132	-	pF
Reverse Transfer Capacitance	Crss	f=100kHz	-	8.6	-		
Total Gate Charge	Qg	- V _{DS} =800V V _{GS} =-4V/+15V		-	165	-	nC
Gate to Source Charge	Qgs			-	55	-	
Gate to Drain Charge	Qgd	- I⊳ =50A	-	60	-		
Switching Characteristics	L	1					
Turn-On Delay Time	td(on)	$V_{DD} = 800V \\ V_{GS} = -4/+15V \\ I_D = 50A \\ R_{G(ext)} = 5\Omega$		-	10	-	- ns
Rise Time	tr			-	26	-	
Turn-Off Delay Time	td(off)			-	35	-	
Fall Time	tr			-	9	-	
Turn-On Switching Energy	Eon	$V_{DD} = 800V \\ V_{GS} = -4V/+15V \\ I_{D} = 50A \\ R_{G(ext)} = 5\Omega$		-	476	-	mJ
Turn-Off Switching Energy	Eoff			-	155	-	
Total Switching Energy	Etot			-	631	-	
Body Diode Characteristics , at TJ = 3	25° C , unless o	otherwise specified					
Continuous Diode Fwd Current	Isdc	V _{GS} = -4V		-	100	-	A
Maximum Source Current	lsм	V _{GS} = -4V pulse width tp limited by TJ max		-	180	-	A
Drain-Source Reverse Voltage	Vsd	Isp = $25A$, V _{GS} = $-4V$		-	4.2		V
Reverse Recovery Charge	Qrr	V _R = 800V Is = 50A V _{GS} = -4V dif/dt = 4100 A/µs		-	296	-	nC
Peak Forward Recovery Current	lп			-	33	-	A
Reverse Recovery Time	Trr			_	21	-	ns


Notes:


1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle > 2%.



Typical Performance

Fig. 1 On-Region Characteristics, T_J=25℃

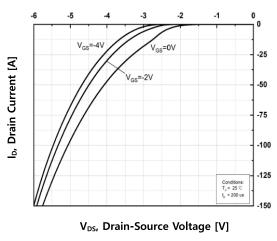


Fig. 2 On-Region Characteristics, T_J=175°C

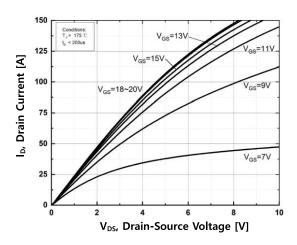


Fig. 4 Transfer Characteristics

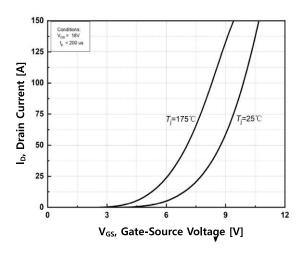
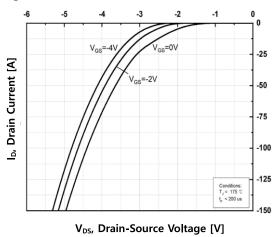



Fig. 6 V_{DS}-I_{DS} Characteristics, T_J=175°C

www.dacosemi.com.tw

Typical Performance

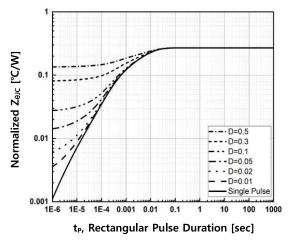
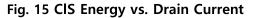



Fig. 13 Transient Thermal impedance

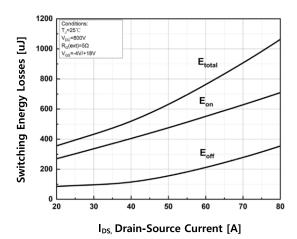


Fig. 17 Switching Times vs. R_{g(ext)}

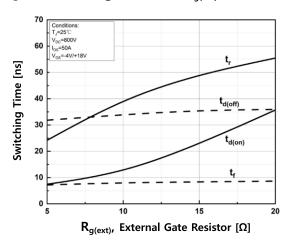


Fig. 14 Safe Operating Area

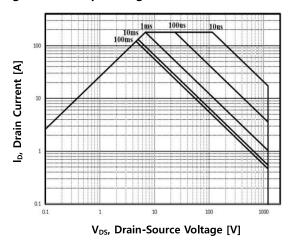



Fig. 16 CIS Energy vs. R_{g(ext)}

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.For the most up-to-date version, please visit our website.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.