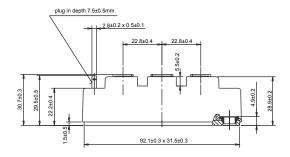
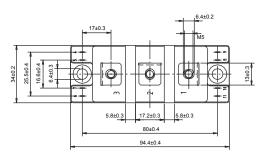
Silicon Carbide Enhancement Mode MOSFET

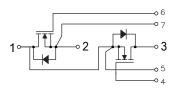
Preliminary


Features

- ♦ V_{DSS} = 1200V
- ightharpoonup R_{DS(ON)} < 34 mΩ@ V_{GS} = 20 V
- Fully Avalanche Rated
- Pb Free & RoHS Compliant
- Isolation Type Package
- Electrically Isolation base plate

HB-9434


Applications


- Solar Inverters
- Switch Mode Power Supplies
- **Power Converters**
- **Battery Chargers**
- Motor Drive

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Parameter	Symbol	Ratings	Unit
Drain-Source Voltage	V _{DS}	1200	٧
Gate-Source Voltage	V _{GS}	-10/+20	V
Drain Current-Continuous @ T _c =25°C @ T _c =100°C	Ι _D	80 50	Α
Drain Current-Pulsed @ T _C =25°C Note1	I _{DM}	250	Α
Maximum Power Dissipation	P _D	460	w
Storage Temperature Range	T _{STG}	-50 to +150	°C
Operating Junction Temperature Range	TJ	-50 to +150	°C
Thermal Resistance, Junction-to-Case	$R heta_JC$	0.26	°C/W
Isolation Voltage (A.C. 1 minute)	V _{iso}	3000	v
Mounting torque (M5 Screw)	M d	3-5	N _m
Weight		170	g

Electrical Characteristics @ T_J =25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
OFF Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V · I _{DS} =0.3mA	1200	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0V , V _{DS} =1200V	-	-	50	uA		
Gate-Body Leakage	I _{GSS}	V _{GS} =20V , V _{DS} =0V	-	-	500	nA		
ON Characteristics								
Gate Threshold Voltage	V _{TH}	V _{DS} =V _{GS} , I _{DS} =8mA	2.0	2.5	3.5	٧		
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =20V , I _{DS} =80A	-	28	34	mΩ		
Gate Resistance	R _G		-	1.6	2.9	Ω		
Forward Transconductance	g _{fs}	$ V_{DS} > 2 I_D R_{DS(on)M}$, Note1 $ I_D = 50 A$	-	21	-	s		
Dynamic Characteristics								
Input Capacitance	C _{iss}	V _{DS} =1000V	-	3050	-			
Output Capacitance	Coss	V _{GS} =0V	-	184	-	pF		
Reverse Transfer Capacitance	C _{rss}	Freq.=1MHz	-	40	-			
Turn-On Switching Energy	Eon	V _{DD} =800V , V _{GS} =-5V/+20V	-	1.4	-	I		
Turn-Off Switching Energy	E _{off}	I_D =50A , $R_{G(ext)}$ =6.8Ω Load =412μH	-	0.3	-	mJ		
Switching Characteristics								
Turn-On Delay Time	t _{d(on)}	V _{DD} =800V	-	16	-			
Rise Time	t _r	V _{GS} =20V	-	29	-	no		
Turn-Off Delay Time	t _{d(off)}	I _{DS} =50A	-	32	-	ns		
Fall Time	t _f	$R_G=2.5\Omega$	-	30	-			
Total Gate Charge at 10V	Qg	V _{DS} =800V	-	196	-			
Gate to Source Charge	Q_{gs}	V _{GS} =20V	1	24	-	nC		
Gate to Drain Charge	\mathbf{Q}_{gd}	I _{DS} =50A	-	48	-			
Reverse Diode Characteristics								
Drain-Source Diode Forward Voltage	V _F	T _J =25°C , I _F =80A	-	1	6.5	V		
Diode Continuous Forward Current	I _F		-	-	50	Α		
Diode Pulsed Current Note1	I _{F,pulse}		-	-	250	Α		
Reverse Recovery time	T _{RR}	I _F =0.5V , I _R =1.0A , I _{RR} =0.25A	-	-	100	ns		

^{1.} Pulse Test: Pulse Width ≤ 300 μ s, Duty Cycle > 2%.

Typical Characteristics

Figure 1. Maximum Power Dissipation (MOSFET)
Derating vs. Case Temperature

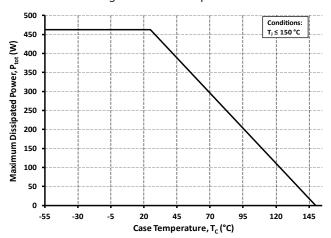


Figure 3. Safe Operating Area(MOSFET)

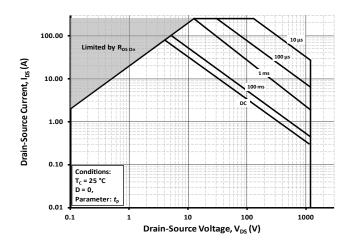


Figure 5. Output Characteristics $T_1 = 25$ °C

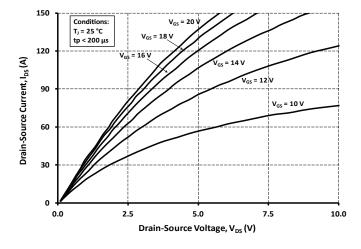


Figure 2. Continous Drain Current (MOSFET)
Derating vs Case Temperature

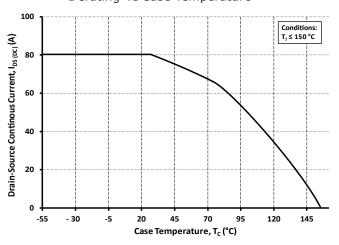


Figure 4. MOSFET Junction to Case Thermal Impedance

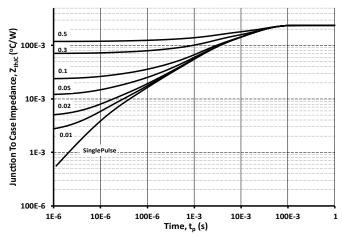
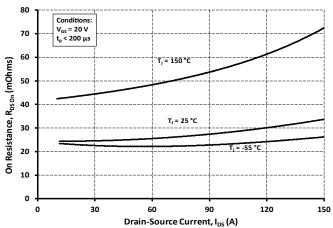



Figure 6. On-Resistance vs. Drain Current For Various Temperatures

Typical Characteristics

Figure 7. On-Resistance vs. Temperature For Various Gate-Source Voltage

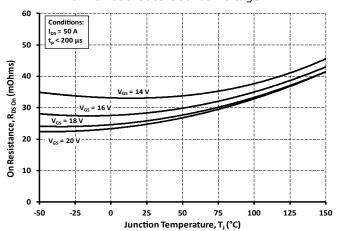


Figure 9. Transfer Characteristic for Various Junction Temperatures

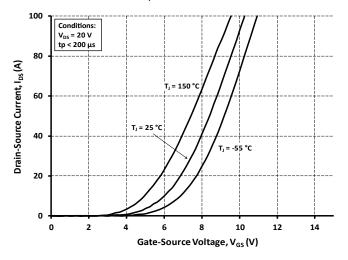


Figure 11. Typical forward characteristics of reverse diode

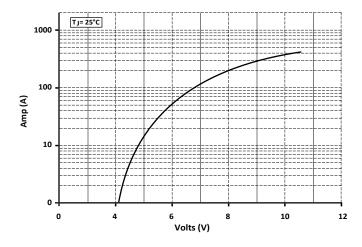


Figure 8. Threshold Voltage vs. Temperature

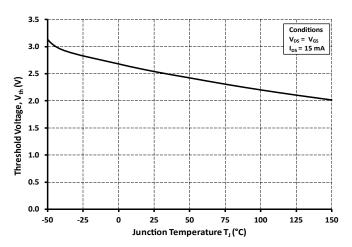


Figure 10. Capacitances vs. Drain-Source Voltage (0 - 1 kV)

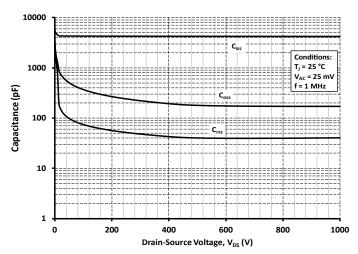
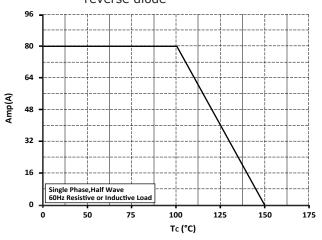



Figure 12. Forward derating curve of reverse diode

Typical Characteristics

Figure 13. Peak forward surge current of reverse

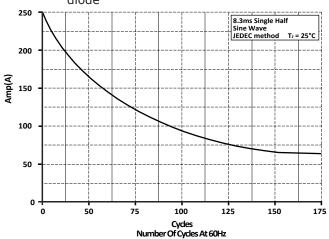


Figure 14. Typical reverse diode characteristics

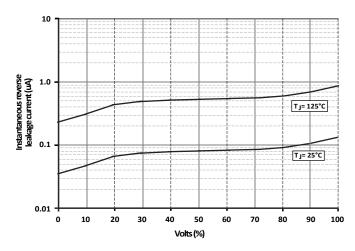


Figure 15. Gate Charge Characteristics

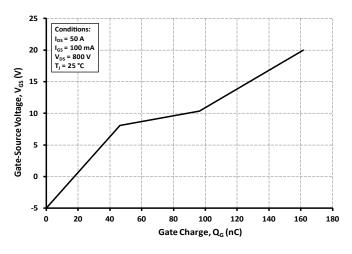


Figure 16. Inductive Switching Energy vs. Temperature

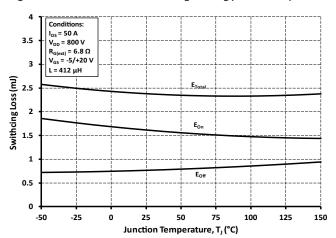


Figure 17. Timing vs. $R_{G(ext)}$

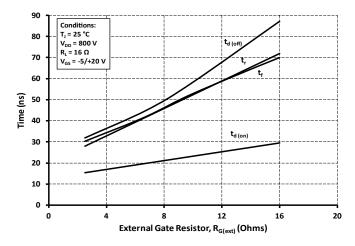
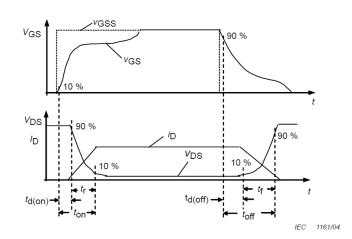



Figure 18. Resistive Switching Time Description

Disclaimer

DACO Semiconductor reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.

DACO Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Purchasers is responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by DACO Semiconductor. "Typical" parameters which may be provided in DACO Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.

DACO Semiconductor products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accept no liability for inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers buy or use DACO Semiconductor products for any such unintended or unauthorized application, Purchasers shall indemnify and hold DACO Semiconductor and its suppliers and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.