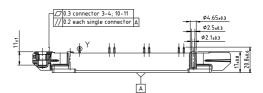


DASMM450N120BH3

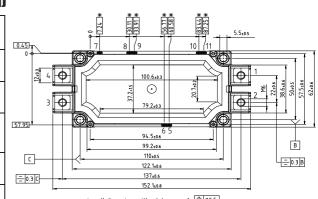
SiC MOSFET Power Module

Features

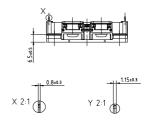
- V_{DSS} = 1200V
- R_{DS(ON)} < 5.8 mΩ@ V_{GS} = 15 V
- ◆ Fully Avalanche Rated
- Pb Free & RoHS Compliant
- Isolation Type Package
- Electrically Isolation base plate
- Full SiC Solution (SiC MOSFET + SiC Schottky Diode)



Dimensions in mm (1 mm = 0.0394")


Applications

- Solar Inverters
- Power Converters
- Motor Drive
- Switch Mode Power Supplies
- Battery Chargers



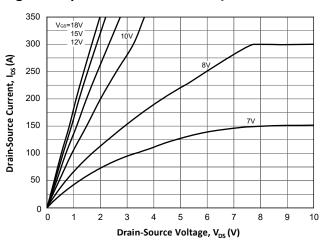
Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V _{DS}	1200	V	
Gate-Source Voltage		V _{GS}	-10/+20	V	
Drain Current-Continuous	@ T _c =25°C @ T _c =100°C	Ι _D	450 300	А	
Drain Current-Pulsed	@ T _c =25°C	I _{DM}	900	А	
Maximum Power Dissipation		P _D	1875	W	
Storage Temperature Range		T _{STG}	-40 to +150	°C	
Operating Junction Temperature Range		T_{VJ}	-40 to +150	°C	
Thermal Resistance, Junction-to-Case		R _{θJC}	0.08	°C/W	
Isolation Voltage (A.C. 1 minute) between All Terminals and Baseplate		Viso	2500	V	
Mounting torque Module Base Busbar to Ter	to Heatsink (M5) minal (M6)	Md	3~6 2.5~5	Nm]

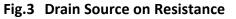
* = all dimensions with a tolerance of 0.5 dimensions valid in mounted condition

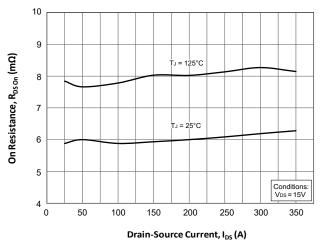
Electrical Characteristics @ TvJ =25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFF Characteristics							
Drain-Source Breakdown Voltage	BVDSS	Vgs =0V , Ips =0.1mA		1200	-	-	V
Zero Gate Voltage Drain Current	IDSS	V _{GS} =0V , V _{DS} =1200V		-	-	200	μA
Gate-Body Leakage	lgss	V _{GS} =20V , V _{DS} =0V		-	-	500	nA
ON Characteristics	I				<u> </u>		
Gate Threshold Voltage	VGS(th)	VDS =VGS · IDS =8mA		1.6	2.1	4	V
Drain-Source On-State Resistance	RDS(on)	Vgs =15V , Ids =150A		-	5.8	-	mΩ
Internal Gate Resistance	RG(int)			-	2.45	-	Ω
Dynamic Characteristics					<u>.</u>	•	
Input Capacitance	Ciss	V _{DS} =800V		-	20	-	nF
Output Capacitance	Coss	V _{GS} =0V V _{AC} =1V		-	1.8	-	
Reverse Transfer Capacitance	Crss	Freq.=1MHz		-	0.2	-	
Total Gate Charge	Qg	V _{DS} =600V		-	550	-	nC
Gate to Source Charge	Qgs	V _{GS} =-4V/+15V		-	178	-	
Gate to Drain Charge	Qgd	Ibs =300A		-	276	-	
Switching Characteristics					1	1	
Turne On Dalay Times		V _{DD} = 600V	Tvj =25°C	-	96	-	- ns - mJ
Turn-On Delay Time	td(on)		Tvj =125°C	-	97	-	
Rise Time	tr		Tvj =25°C	-	72	-	
	lr	V _{GS} = -4/+15V	Tvj =125°C	-	79	-	
Turn-Off Delay Time	t 1/2 50	I _{DS} = 300A	Tvj =25°C	-	146	-	
	td(off)	R _G = 2.2 Ω	Tvj =125°C	-	167	-	
Fall Time	tr		Tvj =25°C	-	19.8	-	
	ŭ		Tvj =125°C	-	19.2	-	
Turn-On Switching Energy	Eon	V _{DD} = 600V	Tvj =25°C	-	2.4	-	
	Lon	V _{GS} = -4V/+15V	Tvj =125°C	-	2.6	-	
Turn-Off Switching Energy	Eoff	ID = 300A R _{G(ext)} = 2.2 Ω	Tvj =25°C	-	9.75	-	
	Lon		Tvj =125°C	-	9.78	-	
SiC Schottky Diode Characteristics	, at T _J = 25°	°C , unless otherwise spec	ified				
Continuous Diode Fwd Current	ISDC	V _{GS} = 0V		-	300	-	A
Drain-Source Reverse Voltage	Vsd	$I_{SD} = 300A$, $V_{GS} = 0V$		-	1.8		V
MOSFET Forward Recovery Charge	0	V _{DD} = 600V · I _{SD} = 300A V _{GS} = 0V · di/dt = 7488A/µs	T _{VJ} =25°C	-	4.5	-	~
	Qrr		Tvj =125°C	-	6.4	-	– nC
MOSFET Peak Forward Recovery Current		$V_{\text{DD}} = 600V \cdot I_{\text{SD}} = 300A$ $V_{\text{GS}} = 0V \cdot di/dt = 7488A/\mu s$	Tvj =25°C	-	137	-	~
	nI		Tvj =125°C	-	172	-	- A
MOSFET Reverse Recovery Time	- -	V _{DD} = 600V → I _{SD} = 300A V _{GS} = 0V → di/dt = 7488A/µs	Tvj =25°C	-	51.5	-	— ns
	Trr		Tvj =125°C	-	59.2	-	


Notes:

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle > 2%.




DASMM450N120BH3

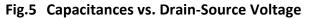

Typical Characteristics

Fig.1 Output Characteristics at $T_1 = 25^{\circ}C$

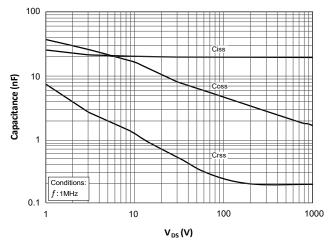
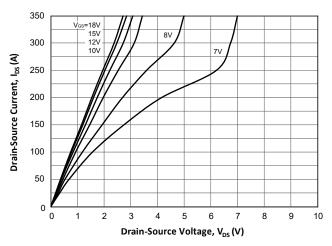
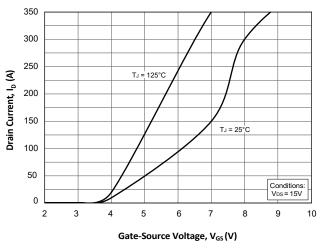
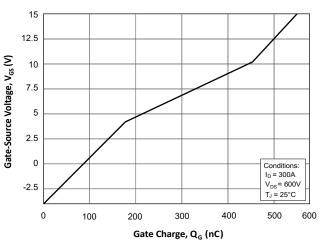
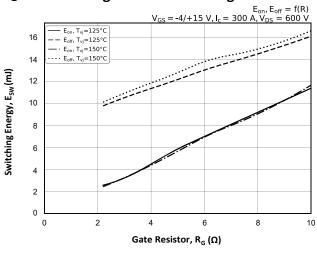



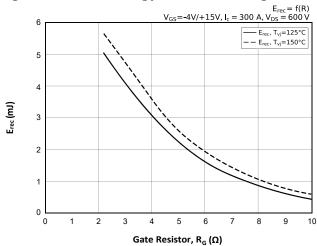
Fig.2 Output Characteristics at T_J=125°C

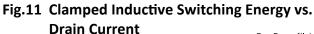
Fig.4 Transfer Characteristics


Fig.6 Gate Charge Characteristics

www.dacosemi.com.tw




Typical Characteristics

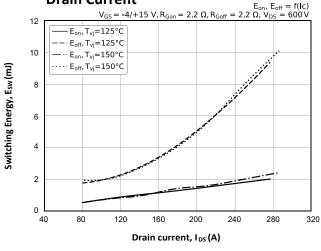


Fig.7 Switching losses vs R_G change

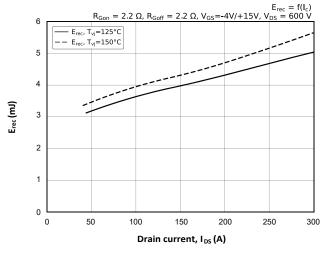
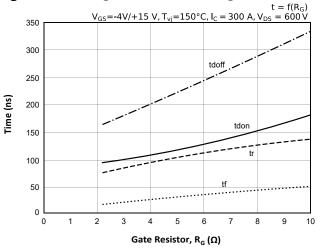
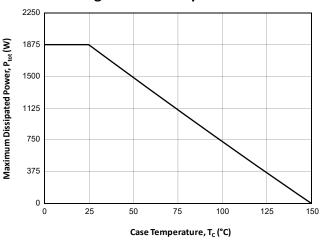
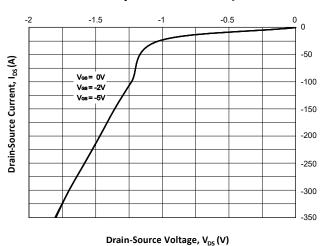


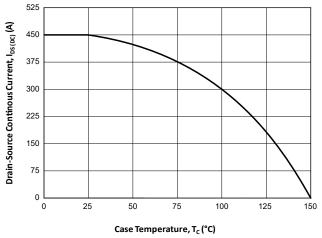
Fig.8 Reverse Energy loss vs. Drain Current

Fig.10 Switching Timer vs RG Change


Fig.12 Max. Power Dissipation (MOSFET) Derating vs. Case Temperature

www.dacosemi.com.tw



Typical Characteristics

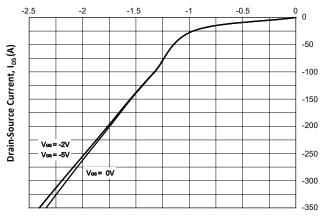


Fig.13 SiC Schottky Diode curves T_J =25°C

Fig.14 SiC Schottky Diode curves T_J = 125°C

Drain-Source Voltage, V_{DS} (V)

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.